AWS 기술 블로그

Category: Amazon Bedrock

Amazon Bedrock 기반 Amorepacific 리뷰 요약 서비스 평가 방법 구현하기

Amorepacific은 ‘사람을 아름답게, 세상을 아름답게’ 하는 뷰티 기업으로, 고객의 다양한 아름다움을 존중하며 혁신과 창의성을 통해 글로벌 뷰티 산업을 선도하는 기업입니다. Amorepacific은 설화수, 라네즈, 헤라, 이니스프리, 아이오페, 에뛰드 등 32개의 브랜드를 보유하고 있으며 최근 ‘Live Your New Beauty’ 슬로건 아래, 모든 고객이 자신만의 아름다움을 발견하고 실현하는 삶을 누리는 미래를 만들어나가고자 노력하고 있습니다. Amorepacific의 AI솔루션 팀은 최근 […]

AWS PrivateLink를 사용하여 Amazon Bedrock 프라이빗 접근 설정하기

이 글은 AWS Machine Learning Blog에 게시된 Use AWS PrivateLink to set up private access to Amazon Bedrock By Ram Vittal, Michael Daniels, and Ray Khorsandi를 한국어 번역 및 편집하였습니다. Amazon Bedrock은 AWS에서 제공하는 완전 관리형 서비스로, 개발자에게 여러 파운데이션 모델들과 각 모델들을 사용자의 어플리케이션에 맞게 커스터마이징할 수 있는 도구들을 제공합니다. 이를 통해 개발자는 인프라를 […]

Amazon Bedrock으로 그래프 RAG 구현하기

개요 대규모 언어 모델들은 방대한 데이터를 기반으로 광범위한 지식과 우수한 문장 생성 능력을 갖추고 있습니다. 그러나 이러한 모델들은 학습 시점 이후의 최신 정보나 특정 주제에 대한 심층 지식을 반영하는 데 한계가 있으며, 때때로 환각(hallucination) 문제로 답변의 정확성을 떨어뜨리기도 합니다. 이러한 문제를 해결하기 위해, RAG(Retrieval Augmented Generation) 프레임워크가 등장했습니다. RAG는 필요한 정보를 자체 데이터베이스에 저장하고 검색해, […]

Amazon Bedrock의 Claude와 Amazon Kendra로 향상된 RAG 사용하기

Amazon Bedrock의 Claude LLM v2.1은 200k token을 가지는 Context Window를 제공하고, 환각(Hallucination) 방지에서도 높은 성능을 보여주고 있습니다. 또한, Amazon Q에서는 Amazon Bedrock과 Amazon Kendra을 이용하여 다양한 데이터 소스를 통합하여 업무를 간소화하고, 빠른 의사결정 및 문제점 해결이 가능하도록, 즉각적이고 관련성 있는 정보와 조언을 제공하고 있습니다. 본 게시글은 Amazon Bedrock의 Claude LLM과 Amazon Kendra를 사용하여 RAG (Retrieval Augmented Generation)가 적용된 […]

한영 동시 검색 및 인터넷 검색을 활용하여 RAG를 편리하게 활용하기

기업의 중요한 문서를 검색하여 편리하게 활용하기 위하여 LLM(Large Language Model)을 활용하는 기업들이 늘어나고 있습니다. 기업의 모든 데이터를 사전 학습하는 것은 비용 및 시간에 대한 제약뿐 아니라 데이터 보안 면에서도 바람직하지 않을 수 있습니다. RAG(Retrieval-Augmented Generation)의 지식 저장소(Knowledge Store)를 활용하면, 다수의 문서를 안전하게 검색하여 관련된 문서(Relevant documents)를 추출한 후에 LLM에서 용도에 맞게 활용할 수 있습니다. RAG의 지식 […]

Multi-RAG와 Multi-Region LLM로 한국어 Chatbot 만들기

사전학습(pretrained)되지 않은 데이터나 민감한 정보를 가지고 있어서 사전학습 할 수 없는 기업의 중요한 데이터는 RAG(Retrieval-Augmented Generation)을 이용하여 LLM(Large Language Model)에서 이용될 수 있습니다. RAG는 지식저장소(Knowledge Store)의 연관성 검색(sementic search)을 이용해, 질문과 가장 가까운 문서를 LLM의 Context로 활용합니다. 이러한 지식저장소에는 대표적인 In-memory vector store인 Faiss, persistent store이면서 대용량 병렬처리가 가능한 Amazon OpenSearch와 완전관리형 검색서비스인 Amazon Kendra가 있습니다. 또한, 2023년 re:Invent에서는 Amazon Aurora, OpenSearch, […]

ChatOps

Amazon Bedrock, AWS Chatbot을 이용한 ChatOps 모니터링 솔루션 구축하기

Background Troubleshooting 고객들은 시스템을 운영하며 다양한 장애 상황을 마주합니다. 각 장애 상황에는 장애가 발생한 리소스에서 에러 로그가 발생하고, 이러한 에러들 중 긴급하게 처리되어야 하는 에러들은 실시간으로 보고되고 즉시 처리되어야 합니다. 개발자들은 서비스 장애 상황을 해결하기 위해, 리소스에서 발생한 에러 로그를 검색엔진등을 이용해 솔루션을 찾습니다. 또한 많은 회사들은 그들의 서비스를 운영하며 대표적인 장애 상황에 대한 문제 […]

Amazon Bedrock을 이용하여 Stream 방식의 한국어 Chatbot 구현하기

2023년 9월 Amazon Bedrock이 정식버전을 출시하면서 Amazon Titan, Anthropic Claude등의 다양한 LLM (Large Language Model)을 AWS 환경에서 편리하게 사용할 수 있게 되었습니다. 특히 Anthropic의 Claude 모델은 한국어를 비교적 잘 지원하고 있습니다. Chatbot과 원활한 대화를 위해서는 사용자의 질문(Question)에 대한 답변(Answer)을 완전히 얻을 때까지 기다리기 보다는 Stream 형태로 대화하듯이 보여주는 것이 사용성에서 좋습니다. 본 게시글은 Amazon Bedrock을 사용하여 Stream을 지원하는 […]