Amazon Web Services ブログ

Category: Amazon SageMaker

Amazon SageMaker Canvas でノーコード機械学習を行うために Google Cloud Platform BigQuery からデータをインポートする

現代のクラウド中心のビジネス環境では、データが複数のクラウドやオンプレミスのシステムに分散していることが多くあります。この断片化は、お客様が機械学習 (ML) イニシアチブとして、データを統合し、分析する作業を複雑にしています。

本稿では、さまざまなクラウド環境の中でも Google Cloud Platform (GCP) BigQueryに焦点を当て、データソースを移動することなく、データを直接抽出するアプローチをご紹介します。これにより、クラウド環境間でデータ移動の際に発生する複雑さとオーバーヘッドを最小限に抑えることができるため、組織は ML プロジェクトで様々なデータ資産にアクセスし、活用できるようになります。

Llama 3.x モデルのファインチューニングを Amazon SageMaker Pipelines の新しいビジュアルデザイナーで自動化する

Amazon SageMaker Pipelines のビジュアルデザイナーを使用して、生成AIモデルのトレーニング、ファインチューニング、評価、登録、デプロイを行うエンドツーエンドのワークフローを作成できるようになりました。SageMaker Pipelines は、基盤モデルの運用 (FMOps) のために特別に構築されたサーバーレスワークフロー オーケストレーションサービスです。専門的なワークフローフレームワークを学ぶ必要なく、モデル開発やノートブックの大規模実行を自動化し、プロトタイプから本番環境までの生成 AI ジャーニーを加速します。データサイエンティストや機械学習 (ML) エンジニアは、大規模言語モデル (LLM) の継続的なファインチューニングやスケジュールされたノートブックジョブワークフローなどのタスクにパイプラインを使用できます。パイプラインは、数万のワークフローを並列で実行するようにスケールアップし、ワークロードに応じて自動的にスケールダウンします。

AWS IoT を使用した水道およびガスメーターの公益サービスコネクテッドソリューション

この投稿では、機械学習 (ML) の事前学習済みモデルを使用してリークなどのデータの異常を検出する、広く適用可能なソリューションを紹介します。 このソリューションを実現するため、実際の水道メーターの例を使用し、既存の水道・ガスのメーターインフラストラクチャを AWS IoT Greengrass と AWS IoT Core に統合する手順を説明します。