Amazon Web Services ブログ

Category: Application Services

生成 AI を活用してプレイヤーやプレスのゲームレビューを分析する

ゲーム開発者、ゲームスタジオ、パブリッシャーは、ゲームレビューの急激な増加と多様化によって、レビューの評価に大きな課題を抱えています。こういった変化に効率的に対処して最も重要な問題に注力できるよう、フィードバックを分類し優先順位付けする強固なシステムを開発者は必要としています。これは特に小規模なスタジオにとって課題となっており、限られたスタッフと財務リソースで大量のフィードバックを管理することに苦労しています。

この記事では、Amazon Bedrock を使用してゲームレビューのアップロード、処理、分析、要約を行うことができるサーバーレスソリューションの構築方法を説明します。この例ではゲームレビューに焦点を当てていますが、このアプローチは他の分野のレビューの分析と要約にも応用できます。

AWS でサーバーレスなエンティティ解決ワークフローを構築する方法

このブログ記事では、AWS Entity Resolution を使用してサーバーレスにエンドツーエンドのエンティティ解決ソリューションを構築するのに役立つ、組み合わせ可能なアーキテクチャパターンについて説明します。AWS Entity Resolution は、柔軟で設定可能なワークフローを使用して、複数のアプリケーション、チャネル、データストアにわたる関連データのマッチング、リンク、強化を支援します。この記事では、AWS Entity Resolution を使用して、データの取り込みと準備(ニアリアルタイムおよびバッチベース)、マッチングの実行、ニアリアルタイムでマッチング結果を取得できる自動化されたデータパイプラインの構築に焦点を当てています。

Amazon Bedrock 上で基盤モデルのコストと利用状況を追跡できる社内 SaaS サービスを構築する

この記事では、組織内のチームをテナントとして捉えた場合の、マルチテナントアーキテクチャで Amazon Bedrock を使用して基盤モデルにアクセスするための内部 SaaS レイヤーの構築方法をご紹介します。特に、テナントごとの使用量とコストの追跡、およびテナントごとの使用量制限などのコントロールに焦点を当てています。このソリューションと Amazon Bedrock の利用プランが、一般的な SaaS ジャーニーフレームワークにどのように対応するかについて説明します。ソリューションのコードと AWS Cloud Development Kit (AWS CDK) テンプレートは、GitHub リポジトリで入手できます。