AWS Machine Learning Blog
Category: Amazon SageMaker Autopilot
Reduce cost and development time with Amazon SageMaker Pipelines local mode
Creating robust and reusable machine learning (ML) pipelines can be a complex and time-consuming process. Developers usually test their processing and training scripts locally, but the pipelines themselves are typically tested in the cloud. Creating and running a full pipeline during experimentation adds unwanted overhead and cost to the development lifecycle. In this post, we […]
Unified data preparation, model training, and deployment with Amazon SageMaker Data Wrangler and Amazon SageMaker Autopilot – Part 2
Depending on the quality and complexity of data, data scientists spend between 45–80% of their time on data preparation tasks. This implies that data preparation and cleansing take valuable time away from real data science work. After a machine learning (ML) model is trained with prepared data and readied for deployment, data scientists must often […]
Amazon SageMaker Autopilot is up to eight times faster with new ensemble training mode powered by AutoGluon
Amazon SageMaker Autopilot has added a new training mode that supports model ensembling powered by AutoGluon. Ensemble training mode in Autopilot trains several base models and combines their predictions using model stacking. For datasets less than 100 MB, ensemble training mode builds machine learning (ML) models with high accuracy quickly—up to eight times faster than […]
Identify mangrove forests using satellite image features using Amazon SageMaker Studio and Amazon SageMaker Autopilot – Part 2
Mangrove forests are an important part of a healthy ecosystem, and human activities are one of the major reasons for their gradual disappearance from coastlines around the world. Using a machine learning (ML) model to identify mangrove regions from a satellite image gives researchers an effective way to monitor the size of the forests over […]
Identify mangrove forests using satellite image features using Amazon SageMaker Studio and Amazon SageMaker Autopilot – Part 1
The increasing ubiquity of satellite data over the last two decades is helping scientists observe and monitor the health of our constantly changing planet. By tracking specific regions of the Earth’s surface, scientists can observe how regions like forests, water bodies, or glaciers change over time. One such region of interest for geologists is mangrove […]
Unified data preparation and model training with Amazon SageMaker Data Wrangler and Amazon SageMaker Autopilot – Part 1
September 2023: This post was reviewed and updated for accuracy. Data fuels machine learning (ML); the quality of data has a direct impact on the quality of ML models. Therefore, improving data quality and employing the right feature engineering techniques are critical to creating accurate ML models. ML practitioners often tediously iterate on feature engineering, […]
Automatically generate model evaluation metrics using SageMaker Autopilot Model Quality Reports
Amazon SageMaker Autopilot helps you complete an end-to-end machine learning (ML) workflow by automating the steps of feature engineering, training, tuning, and deploying an ML model for inference. You provide SageMaker Autopilot with a tabular data set and a target attribute to predict. Then, SageMaker Autopilot automatically explores your data, trains, tunes, ranks and finds […]
Make batch predictions with Amazon SageMaker Autopilot
Amazon SageMaker Autopilot is an automated machine learning (AutoML) solution that performs all the tasks you need to complete an end-to-end machine learning (ML) workflow. It explores and prepares your data, applies different algorithms to generate a model, and transparently provides model insights and explainability reports to help you interpret the results. Autopilot can also […]
Amazon SageMaker Autopilot now supports time series data
Amazon SageMaker Autopilot automatically builds, trains, and tunes the best machine learning (ML) models based on your data, while allowing you to maintain full control and visibility. We have recently announced support for time series data in Autopilot. You can use Autopilot to tackle regression and classification tasks on time series data, or sequence data […]
Automate a shared bikes and scooters classification model with Amazon SageMaker Autopilot
February 9, 2024: Amazon Kinesis Data Firehose has been renamed to Amazon Data Firehose. Read the AWS What’s New post to learn more. Amazon SageMaker Autopilot makes it possible for organizations to quickly build and deploy an end-to-end machine learning (ML) model and inference pipeline with just a few lines of code or even without […]