AWS Machine Learning Blog
Category: Apache MXNet on AWS
The importance of hyperparameter tuning for scaling deep learning training to multiple GPUs
Parallel processing with multiple GPUs is an important step in scaling training of deep models. In each training iteration, typically a small subset of the dataset, called a mini-batch, is processed. When a single GPU is available, processing of the mini-batch in each training iteration is handled by this GPU. When training with multiple GPUs, […]
Model Server for Apache MXNet adds support for serving Gluon models
Today AWS released Model Server for Apache MXNet (MMS) v0.4, which adds support for serving Gluon models. Gluon is an imperative and dynamic interface for MXNet, which enables rapid model development, while maintaining MXNet performance. With this release, MMS adds support for packaging and serving Gluon models at scale. In this blog post, we will […]
Apache MXNet (incubating) adds support for Keras 2
The Keras-MXNet deep learning backend is available now, thanks to contributors to the Keras and Apache MXNet (incubating) open source projects. Keras is a high-level neural network API written in Python. It’s popular for its fast and easy prototyping of CNNs and RNNs. Keras developers can now use the high-performance MXNet deep learning engine for […]
Use pre-trained models with Apache MXNet
In this blog post, I’ll show you how to use multiple pre-trained models with Apache MXNet. Why would you want to try multiple models? Why not just pick the one with the best accuracy? As we will see later in the blog post, even though these models have been trained on the same data set and optimized for maximum accuracy, they do behave slightly differently on specific images.
Maximize training performance with Gluon data loader workers
With recent advances in CPU and GPU technology, training complex and deep neural network models in a few hours is within reach for many state of-the-art deep models. However, when you use a system with such high processing throughput potential, the required data for the processing pipeline must be ready before each iteration.
Apache MXNet Model Server adds optimized container images for Model Serving at scale
Today AWS released Apache MXNet Model Server (MMS) v0.3, which streamlines the deployment of model serving for production use cases. The release includes pre-built container images that are optimized for deep learning workloads on GPU and CPU. This enables engineers to set up a scalable serving infrastructure. To learn more about Apache MXNet Model Server […]
Text Classification with Gluon on Amazon SageMaker and AWS Batch
Our customer had a problem: The manual classification of warranty claims was causing a bottleneck. These claims were based on a text field that explained the event in short detail. An example of that text looked something like this: “The plutonium-fueled nuclear reactor overheated on a hot day in Arizona’s recent inclement weather. Burn damage […]
Model Server for Apache MXNet introduces ONNX support and Amazon CloudWatch integration
Today AWS released version 0.2 of Model Server for Apache MXNet (MMS), an open-source library that packages and serves deep learning models for making predictions at scale. Now you can serve models in Open Neural Network Exchange (ONNX) format and publish operational metrics directly to Amazon CloudWatch, where you can create dashboards and alarms. What […]
Speeding up Apache MXNet using the NNPACK library
Apache MXNet is an open source library developers can use to build, train, and re-use deep learning networks. In this blog post, I’ll show you to speed up inference by using the NNPACK library. Indeed, when GPU inference is not available, adding NNPACK to Apache MXNet might be a simple option to extract more performance […]
Updated AWS Deep Learning AMIs: New Versions of TensorFlow, Apache MXNet, Keras, and PyTorch
We’re excited to update the AWS Deep Learning AMIs with significantly faster training on NVIDIA Tesla V100 “Volta” GPUs across many frameworks, including TensorFlow, PyTorch, Keras, and the latest Apache MXNet 1.0 release. There are two main flavors of the AMIs available today. The Conda-based AWS Deep Learning AMI packages the latest point releases of […]