AWS Machine Learning Blog
Improve the performance of your Generative AI applications with Prompt Optimization on Amazon Bedrock
Today, we are excited to announce the availability of Prompt Optimization on Amazon Bedrock. With this capability, you can now optimize your prompts for several use cases with a single API call or a click of a button on the Amazon Bedrock console. In this post, we discuss how you can get started with this new feature using an example use case in addition to discussing some performance benchmarks.
Build cost-effective RAG applications with Binary Embeddings in Amazon Titan Text Embeddings V2, Amazon OpenSearch Serverless, and Amazon Bedrock Knowledge Bases
Today, we are happy to announce the availability of Binary Embeddings for Amazon Titan Text Embeddings V2 in Amazon Bedrock Knowledge Bases and Amazon OpenSearch Serverless. This post summarizes the benefits of this new binary vector support and gives you information on how you can get started.
Build powerful RAG pipelines with LlamaIndex and Amazon Bedrock
In this post, we show you how to use LlamaIndex with Amazon Bedrock to build robust and sophisticated RAG pipelines that unlock the full potential of LLMs for knowledge-intensive tasks.
Get started with Amazon Titan Text Embeddings V2: A new state-of-the-art embeddings model on Amazon Bedrock
Embeddings are integral to various natural language processing (NLP) applications, and their quality is crucial for optimal performance. They are commonly used in knowledge bases to represent textual data as dense vectors, enabling efficient similarity search and retrieval. In Retrieval Augmented Generation (RAG), embeddings are used to retrieve relevant passages from a corpus to provide […]
Modular functions design for Advanced Driver Assistance Systems (ADAS) on AWS
Over the last 10 years, a number of players have developed autonomous vehicle (AV) systems using deep neural networks (DNNs). These systems have evolved from simple rule-based systems to Advanced Driver Assistance Systems (ADAS) and fully autonomous vehicles. These systems require petabytes of data and thousands of compute units (vCPUs and GPUs) to train. This […]
Intelligently search your Jira projects with Amazon Kendra Jira cloud connector
July 2023: This post was reviewed for accuracy. Organizations use agile project management platforms such as Atlassian Jira to enable teams to collaborate to plan, track, and ship deliverables. Jira captures organizational knowledge about the workings of the deliverables in the issues and comments logged during project implementation. However, making this knowledge easily and securely […]
Automatically detect sports highlights in video with Amazon SageMaker
July 2023: Please refer to the Media Replay Engine (MRE) solution presented in this Github repo instead, for the latest and more efficient solution for this use case. MRE is a framework for building automated video clipping and replay (highlight) generation pipelines using AWS services for live and video-on-demand (VOD) content. Extracting highlights from a […]
Define and run Machine Learning pipelines on Step Functions using Python, Workflow Studio, or States Language
May 2024: This post was reviewed and updated for accuracy. You can use various tools to define and run machine learning (ML) pipelines or DAGs (Directed Acyclic Graphs). Some popular options include AWS Step Functions, Apache Airflow, KubeFlow Pipelines (KFP), TensorFlow Extended (TFX), Argo, Luigi, and Amazon SageMaker Pipelines. All these tools help you compose […]
Build reusable, serverless inference functions for your Amazon SageMaker models using AWS Lambda layers and containers
July 2023: This post was reviewed for accuracy. Please refer to Deploying ML models using SageMaker Serverless Inference, a new inference option that enables you to easily deploy machine learning models for inference without having to configure or manage the underlying infrastructure. In AWS, you can host a trained model multiple ways, such as via […]
Solving numerical optimization problems like scheduling, routing, and allocation with Amazon SageMaker Processing
July 2023: This post was reviewed for accuracy. In this post, we discuss solving numerical optimization problems using the very flexible Amazon SageMaker Processing API. Optimization is the process of finding the minimum (or maximum) of a function that depends on some inputs, called design variables. This pattern is relevant to solving business-critical problems such […]