AWS Storage Blog
Category: Amazon SageMaker Lakehouse
Streamlining access to tabular datasets stored in Amazon S3 Tables with DuckDB
As businesses continue to rely on data-driven decision-making, there’s an increasing demand for tools that streamline and accelerate the process of data analysis. Efficiency and simplicity in application architecture can serve as a competitive edge when driving high-stakes decisions. Developers are seeking lightweight, flexible tools that seamlessly integrate with their existing application stack, specifically solutions […]
Seamless streaming to Amazon S3 Tables with StreamNative Ursa Engine
Organizations are modernizing data platforms to use generative AI by centralizing data from various sources and streaming real-time data into data lakes. A strong data foundation, such as scalable storage, reliable ingestion pipelines, and interoperable formats, is critical for businesses to discover, explore, and consume data. As organizations modernize their platforms, they often turn to […]
Connect Snowflake to S3 Tables using the SageMaker Lakehouse Iceberg REST endpoint
Organizations today seek data analytics solutions that provide maximum flexibility and accessibility. Customers need their data to be readily available using their preferred query engines, and break down barriers across different computing environments. At the same time, they want a single copy of data to be used across these solutions, to track lineage, be cost […]
Build a data lake for streaming data with Amazon S3 Tables and Amazon Data Firehose
Businesses are increasingly adopting real-time data processing to stay ahead of user expectations and market changes. Industries such as retail, finance, manufacturing, and smart cities are using streaming data for everything from optimizing supply chains to detecting fraud and improving urban planning. The ability to use data as it is generated has become a critical […]