AWS Machine Learning Blog

Category: Technical How-to

Orchestrate an intelligent document processing workflow using tools in Amazon Bedrock

This intelligent document processing solution uses Amazon Bedrock FMs to orchestrate a sophisticated workflow for handling multi-page healthcare documents with mixed content types. The solution uses the FM’s tool use capabilities, accessed through the Amazon Bedrock Converse API. This enables the FMs to not just process text, but to actively engage with various external tools and APIs to perform complex document analysis tasks.

Reducing hallucinations in LLM agents with a verified semantic cache using Amazon Bedrock Knowledge Bases

This post introduces a solution to reduce hallucinations in Large Language Models (LLMs) by implementing a verified semantic cache using Amazon Bedrock Knowledge Bases, which checks if user questions match curated and verified responses before generating new answers. The solution combines the flexibility of LLMs with reliable, verified answers to improve response accuracy, reduce latency, and lower costs while preventing potential misinformation in critical domains such as healthcare, finance, and legal services.

Maximize your file server data’s potential by using Amazon Q Business on Amazon FSx for Windows

In this post, we show you how to connect Amazon Q, a generative AI-powered assistant, to Amazon FSx for Windows File Server to securely analyze, query, and extract insights from your file system data.

How Formula 1® uses generative AI to accelerate race-day issue resolution

In this post, we explain how F1 and AWS have developed a root cause analysis (RCA) assistant powered by Amazon Bedrock to reduce manual intervention and accelerate the resolution of recurrent operational issues during races from weeks to minutes. The RCA assistant enables the F1 team to spend more time on innovation and improving its services, ultimately delivering an exceptional experience for fans and partners. The successful collaboration between F1 and AWS showcases the transformative potential of generative AI in empowering teams to accomplish more in less time.

A red bounding box identifies a vehicle, while a green bounding box identifies the location of the bicycle. The boxes overlap, showing the vehicle is too close to the bicycle.

Using Amazon Rekognition to improve bicycle safety

To better protect themselves, many cyclists are starting to ride with cameras mounted to the front or back of their bicycle. In this blog post, I will demonstrate a machine learning solution that cyclists can use to better identify close calls. The architecture of the solution uses Amazon Rekognition to detect vehicles in recorded bike ride videos. It then analyzes the video to determine if any vehicles are passing too close to the cyclist, within the 3-foot safe distance required by law. The solution automatically generates video clips of these dangerous passing events, which can then be shared with authorities to help improve cyclist safety.

Use language embeddings for zero-shot classification and semantic search with Amazon Bedrock

In this post, we explore what language embeddings are and how they can be used to enhance your application. We show how, by using the properties of embeddings, we can implement a real-time zero-shot classifier and can add powerful features such as semantic search.

Fine-tune LLMs with synthetic data for context-based Q&A using Amazon Bedrock

In this post, we explore how to use Amazon Bedrock to generate synthetic training data to fine-tune an LLM. Additionally, we provide concrete evaluation results that showcase the power of synthetic data in fine-tuning when data is scarce.

Achieve ~2x speed-up in LLM inference with Medusa-1 on Amazon SageMaker AI

Researchers developed Medusa, a framework to speed up LLM inference by adding extra heads to predict multiple tokens simultaneously. This post demonstrates how to use Medusa-1, the first version of the framework, to speed up an LLM by fine-tuning it on Amazon SageMaker AI and confirms the speed up with deployment and a simple load test. Medusa-1 achieves an inference speedup of around two times without sacrificing model quality, with the exact improvement varying based on model size and data used. In this post, we demonstrate its effectiveness with a 1.8 times speedup observed on a sample dataset.

Solution Overview

Amazon Q Business simplifies integration of enterprise knowledge bases at scale

In this post, we demonstrate how to build a knowledge base solution by integrating enterprise data with Amazon Q Business using Amazon S3. This approach helps organizations improve operational efficiency, reduce response times, and gain valuable insights from their historical data. The solution uses AWS security best practices to promote data protection while enabling teams to create a comprehensive knowledge base from various data sources.

GraphStorm SageMaker Arhcitecture Diagram

Faster distributed graph neural network training with GraphStorm v0.4

GraphStorm is a low-code enterprise graph machine learning (ML) framework that provides ML practitioners a simple way of building, training, and deploying graph ML solutions on industry-scale graph data. In this post, we demonstrate how GraphBolt enhances GraphStorm’s performance in distributed settings. We provide a hands-on example of using GraphStorm with GraphBolt on SageMaker for distributed training. Lastly, we share how to use Amazon SageMaker Pipelines with GraphStorm.