AWS Machine Learning Blog
Category: Open Source
GraphStorm 0.3: Scalable, multi-task learning on graphs with user-friendly APIs
GraphStorm is a low-code enterprise graph machine learning (GML) framework to build, train, and deploy graph ML solutions on complex enterprise-scale graphs in days instead of months. With GraphStorm, you can build solutions that directly take into account the structure of relationships or interactions between billions of entities, which are inherently embedded in most real-world […]
Eviden scales AWS DeepRacer Global League using AWS DeepRacer Event Manager
Eviden is a next-gen technology leader in data-driven, trusted, and sustainable digital transformation. With a strong portfolio of patented technologies and worldwide leading positions in advanced computing, security, AI, cloud, and digital platforms, Eviden provides deep expertise for a multitude of industries in more than 47 countries. Eviden is an AWS Premier partner, bringing together […]
Accelerated PyTorch inference with torch.compile on AWS Graviton processors
Originally PyTorch used an eager mode where each PyTorch operation that forms the model is run independently as soon as it’s reached. PyTorch 2.0 introduced torch.compile to speed up PyTorch code over the default eager mode. In contrast to eager mode, the torch.compile pre-compiles the entire model into a single graph in a manner that’s optimal for […]
Develop and train large models cost-efficiently with Metaflow and AWS Trainium
This is a guest post co-authored with Ville Tuulos (Co-founder and CEO) and Eddie Mattia (Data Scientist) of Outerbounds. To build a production-grade AI system today (for example, to do multilingual sentiment analysis of customer support conversations), what are the primary technical challenges? Historically, natural language processing (NLP) would be a primary research and development […]
Implement smart document search index with Amazon Textract and Amazon OpenSearch
In this post, we’ll take you on a journey to rapidly build and deploy a document search indexing solution that helps your organization to better harness and extract insights from documents. Whether you’re in Human Resources looking for specific clauses in employee contracts, or a financial analyst sifting through a mountain of invoices to extract payment data, this solution is tailored to empower you to access the information you need with unprecedented speed and accuracy.
Automate caption creation and search for images at enterprise scale using generative AI and Amazon Kendra
Amazon Kendra is an intelligent search service powered by machine learning (ML). Amazon Kendra reimagines search for your websites and applications so your employees and customers can easily find the content they are looking for, even when it’s scattered across multiple locations and content repositories within your organization. Amazon Kendra supports a variety of document […]
AWS and Hugging Face collaborate to simplify and accelerate adoption of Natural Language Processing models
Just like computer vision a few years ago, the decade-old field of natural language processing (NLP) is experiencing a fascinating renaissance. Not a month goes by without a new breakthrough! Indeed, thanks to the scalability and cost-efficiency of cloud-based infrastructure, researchers are finally able to train complex deep learning models on very large text datasets, […]
Introducing the COVID-19 Simulator and Machine Learning Toolkit for Predicting COVID-19 Spread
There have been breakthroughs in understanding COVID-19, such as how soon an exposed person will develop symptoms and how many people on average will contract the disease after contact with an exposed individual. The wider research community is actively working on accurately predicting the percent population who are exposed, recovered, or have built immunity. Researchers […]
Visualizing TensorFlow training jobs with TensorBoard
TensorBoard is an open source toolkit for TensorFlow users that allows you to visualize a wide range of useful information about your model, from model graphs; to loss, accuracy, or custom metrics; to embedding projections, images, and histograms of weights and biases. This post demonstrates how to use TensorBoard with Amazon SageMaker training jobs, write […]