AWS Machine Learning Blog
Category: Intermediate (200)
Unlock organizational wisdom using voice-driven knowledge capture with Amazon Transcribe and Amazon Bedrock
This post introduces an innovative voice-based application workflow that harnesses the power of Amazon Bedrock, Amazon Transcribe, and React to systematically capture and document institutional knowledge through voice recordings from experienced staff members. Our solution uses Amazon Transcribe for real-time speech-to-text conversion, enabling accurate and immediate documentation of spoken knowledge. We then use generative AI, powered by Amazon Bedrock, to analyze and summarize the transcribed content, extracting key insights and generating comprehensive documentation.
Achieve multi-Region resiliency for your conversational AI chatbots with Amazon Lex
Global Resiliency is a new Amazon Lex capability that enables near real-time replication of your Amazon Lex V2 bots in a second AWS Region. When you activate this feature, all resources, versions, and aliases associated after activation will be synchronized across the chosen Regions. With Global Resiliency, the replicated bot resources and aliases in the […]
Create and fine-tune sentence transformers for enhanced classification accuracy
In this post, we showcase how to fine-tune a sentence transformer specifically for classifying an Amazon product into its product category (such as toys or sporting goods). We showcase two different sentence transformers, paraphrase-MiniLM-L6-v2 and a proprietary Amazon large language model (LLM) called M5_ASIN_SMALL_V2.0, and compare their results.
Empower your generative AI application with a comprehensive custom observability solution
In this post, we set up the custom solution for observability and evaluation of Amazon Bedrock applications. Through code examples and step-by-step guidance, we demonstrate how you can seamlessly integrate this solution into your Amazon Bedrock application, unlocking a new level of visibility, control, and continual improvement for your generative AI applications.
Import data from Google Cloud Platform BigQuery for no-code machine learning with Amazon SageMaker Canvas
This post presents an architectural approach to extract data from different cloud environments, such as Google Cloud Platform (GCP) BigQuery, without the need for data movement. This minimizes the complexity and overhead associated with moving data between cloud environments, enabling organizations to access and utilize their disparate data assets for ML projects. We highlight the process of using Amazon Athena Federated Query to extract data from GCP BigQuery, using Amazon SageMaker Data Wrangler to perform data preparation, and then using the prepared data to build ML models within Amazon SageMaker Canvas, a no-code ML interface.
Create a next generation chat assistant with Amazon Bedrock, Amazon Connect, Amazon Lex, LangChain, and WhatsApp
In this post, we demonstrate how to deploy a contextual AI assistant. We build a solution which provides users with a familiar and convenient interface using Amazon Bedrock Knowledge Bases, Amazon Lex, and Amazon Connect, with WhatsApp as the channel.
Generative AI foundation model training on Amazon SageMaker
In this post, we explore how organizations can cost-effectively customize and adapt FMs using AWS managed services such as Amazon SageMaker training jobs and Amazon SageMaker HyperPod. We discuss how these powerful tools enable organizations to optimize compute resources and reduce the complexity of model training and fine-tuning. We explore how you can make an informed decision about which Amazon SageMaker service is most applicable to your business needs and requirements.
Deploy a serverless web application to edit images using Amazon Bedrock
In this post, we explore a sample solution that you can use to deploy an image editing application by using AWS serverless services and generative AI services. We use Amazon Bedrock and an Amazon Titan FM that allow you to edit images by using prompts.
Best practices for building robust generative AI applications with Amazon Bedrock Agents – Part 2
In this post, we dive into the architectural considerations and development lifecycle practices that can help you build robust, scalable, and secure intelligent agents.
Using Amazon Q Business with AWS HealthScribe to gain insights from patient consultations
In this post, we discuss how you can use AWS HealthScribe with Amazon Q Business to create a chatbot to quickly gain insights into patient clinician conversations.