AWS Machine Learning Blog

Category: How-To

Build a multi-tenant generative AI environment for your enterprise on AWS

While organizations continue to discover the powerful applications of generative AI, adoption is often slowed down by team silos and bespoke workflows. To move faster, enterprises need robust operating models and a holistic approach that simplifies the generative AI lifecycle. In the first part of the series, we showed how AI administrators can build a […]

Use the ApplyGuardrail API with long-context inputs and streaming outputs in Amazon Bedrock

As generative artificial intelligence (AI) applications become more prevalent, maintaining responsible AI principles becomes essential. Without proper safeguards, large language models (LLMs) can potentially generate harmful, biased, or inappropriate content, posing risks to individuals and organizations. Applying guardrails helps mitigate these risks by enforcing policies and guidelines that align with ethical principles and legal requirements.Amazon […]

Accelerated PyTorch inference with torch.compile on AWS Graviton processors

Originally PyTorch used an eager mode where each PyTorch operation that forms the model is run independently as soon as it’s reached. PyTorch 2.0 introduced torch.compile to speed up PyTorch code over the default eager mode. In contrast to eager mode, the torch.compile pre-compiles the entire model into a single graph in a manner that’s optimal for […]

Fine-tune large multimodal models using Amazon SageMaker

Large multimodal models (LMMs) integrate multiple data types into a single model. By combining text data with images and other modalities during training, multimodal models such as Claude3, GPT-4V, and Gemini Pro Vision gain more comprehensive understanding and improved ability to process diverse data types. The multimodal approach allows models to handle a wider range […]

AIML CoE Framework

Establishing an AI/ML center of excellence

The rapid advancements in artificial intelligence and machine learning (AI/ML) have made these technologies a transformative force across industries. According to a McKinsey study, across the financial services industry (FSI), generative AI is projected to deliver over $400 billion (5%) of industry revenue in productivity benefits. As maintained by Gartner, more than 80% of enterprises […]

Automatically redact PII for machine learning using Amazon SageMaker Data Wrangler

Customers increasingly want to use deep learning approaches such as large language models (LLMs) to automate the extraction of data and insights. For many industries, data that is useful for machine learning (ML) may contain personally identifiable information (PII). To ensure customer privacy and maintain regulatory compliance while training, fine-tuning, and using deep learning models, […]

Building AI chatbots using Amazon Lex and Amazon Kendra for filtering query results based on user context

Amazon Kendra is an intelligent search service powered by machine learning (ML). It indexes the documents stored in a wide range of repositories and finds the most relevant document based on the keywords or natural language questions the user has searched for. In some scenarios, you need the search results to be filtered based on […]