AWS Machine Learning Blog
Category: Amazon SageMaker JumpStart
AI21 Jurassic-1 foundation model is now available on Amazon SageMaker
Today we are excited to announce that AI21 Jurassic-1 (J1) foundation models are available for customers using Amazon SageMaker. Jurassic-1 models are highly versatile, capable of both human-like text generation, as well as solving complex tasks such as question answering, text classification, and many others. You can easily try out this model and use it […]
Identify key insights from text documents through fine-tuning and HPO with Amazon SageMaker JumpStart
Organizations across industries such as retail, banking, finance, healthcare, manufacturing, and lending often have to deal with vast amounts of unstructured text documents coming from various sources, such as news, blogs, product reviews, customer support channels, and social media. These documents contain critical information that’s key to making important business decisions. As an organization grows, […]
AlexaTM 20B is now available in Amazon SageMaker JumpStart
July 2023: This post was reviewed for accuracy. Today, we announce the public availability of Amazon’s state-of-the-art Alexa Teacher Model with 20 billion parameters (AlexaTM 20B) through Amazon SageMaker JumpStart, SageMaker’s machine learning hub. AlexaTM 20B is a multilingual large-scale sequence-to-sequence (seq2seq) language model developed by Amazon. You can use AlexaTM 20B for a wide […]
Build high performing image classification models using Amazon SageMaker JumpStart
Image classification is a computer vision-based machine learning (ML) technique that allows you to classify images. Some well-known examples of image classification include classifying handwritten digits, medical image classification, and facial recognition. Image classification is a useful technique with several business applications, but building a good image classification model isn’t trivial. Several considerations can play […]
Predict lung cancer survival status using multimodal data on Amazon SageMaker JumpStart
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, and is composed of tumors with significant molecular heterogeneity resulting from differences in intrinsic oncogenic signaling pathways [1]. Enabling precision medicine, anticipating patient preferences, detecting disease, and improving care quality for NSCLC patients are important topics among healthcare and life sciences (HCLS) […]
Generate images from text with the stable diffusion model on Amazon SageMaker JumpStart
March 2023: This post was reviewed and updated with support for Stable Diffusion inpainting model. Today, we announce that Stable Diffusion 1 and Stable Diffusion 2 are available in Amazon SageMaker JumpStart. JumpStart is the machine learning (ML) hub of SageMaker that provides hundreds of built-in algorithms, pre-trained models, and end-to-end solution templates to help you quickly get started with […]
Run text generation with Bloom and GPT models on Amazon SageMaker JumpStart
Today, we announce that large language models Bloom and GPT-2 are available in SageMaker JumpStart. Amazon SageMaker JumpStart is the machine learning hub of SageMaker that provides hundreds of built-in algorithms, pre-trained models, and end-to-end solution templates to help customers quickly get started with machine learning (ML). You can use these models for a wide […]
Transfer learning for TensorFlow text classification models in Amazon SageMaker
July 2023: You can also use the newly launched JumpStart APIs, an extension of the SageMaker Python SDK. These APIs allow you to programmatically deploy and fine-tune a vast selection of JumpStart-supported pre-trained models on your own datasets. Please refer to Amazon SageMaker JumpStart models and algorithms now available via API for more details on how […]
Detect fraudulent transactions using machine learning with Amazon SageMaker
Businesses can lose billions of dollars each year due to malicious users and fraudulent transactions. As more and more business operations move online, fraud and abuses in online systems are also on the rise. To combat online fraud, many businesses have been using rule-based fraud detection systems. However, traditional fraud detection systems rely on a […]
Use ADFS OIDC as the IdP for an Amazon SageMaker Ground Truth private workforce
To train a machine learning (ML) model, you need a large, high-quality, labeled dataset. Amazon SageMaker Ground Truth helps you build high-quality training datasets for your ML models. With Ground Truth, you can use workers from either Amazon Mechanical Turk, a vendor company of your choosing, or an internal, private workforce to enable you to […]