AWS Machine Learning Blog

Category: Generative AI

Improving Retrieval Augmented Generation accuracy with GraphRAG

Lettria, an AWS Partner, demonstrated that integrating graph-based structures into RAG workflows improves answer precision by up to 35% compared to vector-only retrieval methods. In this post, we explore why GraphRAG is more comprehensive and explainable than vector RAG alone, and how you can use this approach using AWS services and Lettria.

Add a generative AI experience to your website or web application with Amazon Q embedded

Amazon Q embedded is a feature that lets you embed a hosted Amazon Q Business assistant on your website or application to create more personalized experiences that boost end-users’ productivity. In this post, we demonstrate how to use the Amazon Q embedded feature to add an Amazon Q Business assistant to your website or web application using basic HTML or React.

Design multi-agent orchestration with reasoning using Amazon Bedrock and open source frameworks

This post provides step-by-step instructions for creating a collaborative multi-agent framework with reasoning capabilities to decouple business applications from FMs. It demonstrates how to combine Amazon Bedrock Agents with open source multi-agent frameworks, enabling collaborations and reasoning among agents to dynamically execute various tasks. The exercise will guide you through the process of building a reasoning orchestration system using Amazon Bedrock, Amazon Bedrock Knowledge Bases, Amazon Bedrock Agents, and FMs. We also explore the integration of Amazon Bedrock Agents with open source orchestration frameworks LangGraph and CrewAI for dispatching and reasoning.

How Fastweb fine-tuned the Mistral model using Amazon SageMaker HyperPod as a first step to build an Italian large language model

Fastweb, one of Italy’s leading telecommunications operators, recognized the immense potential of AI technologies early on and began investing in this area in 2019. In this post, we explore how Fastweb used cutting-edge AI and ML services to embark on their LLM journey, overcoming challenges and unlocking new opportunities along the way.

Using natural language in Amazon Q Business: From searching and creating ServiceNow incidents and knowledge articles to generating insights

In this post, we’ll demonstrate how to configure an Amazon Q Business application and add a custom plugin that gives users the ability to use a natural language interface provided by Amazon Q Business to query real-time data and take actions in ServiceNow.

Simplify multimodal generative AI with Amazon Bedrock Data Automation

Amazon Bedrock Data Automation in public preview, offers a unified experience for developers of all skillsets to easily automate the extraction, transformation, and generation of relevant insights from documents, images, audio, and videos to build generative AI–powered applications. In this post, we demonstrate how to use Amazon Bedrock Data Automation in the AWS Management Console and the AWS SDK for Python (Boto3) for media analysis and intelligent document processing (IDP) workflows.

Architecture Diagram

How TUI uses Amazon Bedrock to scale content creation and enhance hotel descriptions in under 10 seconds

TUI Group is one of the world’s leading global tourism services, providing 21 million customers with an unmatched holiday experience in 180 regions. The TUI content teams are tasked with producing high-quality content for its websites, including product details, hotel information, and travel guides, often using descriptions written by hotel and third-party partners. In this post, we discuss how we used Amazon SageMaker and Amazon Bedrock to build a content generator that rewrites marketing content following specific brand and style guidelines.

Architecture of AWS Field Advisor using Amazon Q Business

How AWS sales uses Amazon Q Business for customer engagement

In April 2024, we launched our AI sales assistant, which we call Field Advisor, making it available to AWS employees in the Sales, Marketing, and Global Services organization, powered by Amazon Q Business. Since that time, thousands of active users have asked hundreds of thousands of questions through Field Advisor, which we have embedded in our customer relationship management (CRM) system, as well as through a Slack application.

Discover insights from your Amazon Aurora PostgreSQL database using the Amazon Q Business connector

In this post, we walk you through configuring and integrating Amazon Q for Business with Aurora PostgreSQL-Compatible to enable your database administrators, data analysts, application developers, leadership, and other teams to quickly get accurate answers to their questions related to the content stored in Aurora PostgreSQL databases.

How Tealium built a chatbot evaluation platform with Ragas and Auto-Instruct using AWS generative AI services

In this post, we illustrate the importance of generative AI in the collaboration between Tealium and the AWS Generative AI Innovation Center (GenAIIC) team by automating the following: 1/ Evaluating the retriever and the generated answer of a RAG system based on the Ragas Repository powered by Amazon Bedrock, 2/ Generating improved instructions for each question-and-answer pair using an automatic prompt engineering technique based on the Auto-Instruct Repository. An instruction refers to a general direction or command given to the model to guide generation of a response. These instructions were generated using Anthropic’s Claude on Amazon Bedrock, and 4/ Providing a UI for a human-based feedback mechanism that complements an evaluation system powered by Amazon Bedrock.