AWS Machine Learning Blog
Category: AWS Deep Learning AMIs
Build high-performance ML models using PyTorch 2.0 on AWS – Part 1
PyTorch is a machine learning (ML) framework that is widely used by AWS customers for a variety of applications, such as computer vision, natural language processing, content creation, and more. With the recent PyTorch 2.0 release, AWS customers can now do same things as they could with PyTorch 1.x but faster and at scale with […]
Optimized PyTorch 2.0 inference with AWS Graviton processors
New generations of CPUs offer a significant performance improvement in machine learning (ML) inference due to specialized built-in instructions. Combined with their flexibility, high speed of development, and low operating cost, these general-purpose processors offer an alternative to other existing hardware solutions. AWS, Arm, Meta and others helped optimize the performance of PyTorch 2.0 inference […]
Federated Learning on AWS with FedML: Health analytics without sharing sensitive data – Part 2
This blog post is co-written with Chaoyang He and Salman Avestimehr from FedML. Analyzing real-world healthcare and life sciences (HCLS) data poses several practical challenges, such as distributed data silos, lack of sufficient data at a single site for rare events, regulatory guidelines that prohibit data sharing, infrastructure requirement, and cost incurred in creating a […]
Federated Learning on AWS with FedML: Health analytics without sharing sensitive data – Part 1
This blog post is co-written with Chaoyang He and Salman Avestimehr from FedML. Analyzing real-world healthcare and life sciences (HCLS) data poses several practical challenges, such as distributed data silos, lack of sufficient data at any single site for rare events, regulatory guidelines that prohibit data sharing, infrastructure requirement, and cost incurred in creating a […]
Run machine learning inference workloads on AWS Graviton-based instances with Amazon SageMaker
Today, we are launching Amazon SageMaker inference on AWS Graviton to enable you to take advantage of the price, performance, and efficiency benefits that come from Graviton chips. Graviton-based instances are available for model inference in SageMaker. This post helps you migrate and deploy a machine learning (ML) inference workload from x86 to Graviton-based instances […]
Model hosting patterns in Amazon SageMaker, Part 7: Run ensemble ML models on Amazon SageMaker
Model deployment in machine learning (ML) is becoming increasingly complex. You want to deploy not just one ML model but large groups of ML models represented as ensemble workflows. These workflows are comprised of multiple ML models. Productionizing these ML models is challenging because you need to adhere to various performance and latency requirements. Amazon […]
AWS Deep Learning AMIs: New framework-specific DLAMIs for production complement the original multi-framework DLAMIs
Since its launch in November 2017, the AWS Deep Learning Amazon Machine Image (DLAMI) has been the preferred method for running deep learning frameworks on Amazon Elastic Compute Cloud (Amazon EC2). For deep learning practitioners and learners who want to accelerate deep learning in the cloud, the DLAMI comes pre-installed with AWS-optimized deep learning (DL) frameworks […]
Run AlphaFold v2.0 on Amazon EC2
After the article in Nature about the open-source of AlphaFold v2.0 on GitHub by DeepMind, many in the scientific and research community have wanted to try out DeepMind’s AlphaFold implementation firsthand. With compute resources through Amazon Elastic Compute Cloud (Amazon EC2) with Nvidia GPU, you can quickly get AlphaFold running and try it out yourself. […]
Train and deploy deep learning models using JAX with Amazon SageMaker
Amazon SageMaker is a fully managed service that enables developers and data scientists to quickly and easily build, train, and deploy machine learning (ML) models at any scale. Typically, you can use the pre-built and optimized training and inference containers that have been optimized for AWS hardware. Although those containers cover many deep learning workloads, you may have […]
Join AWS at NVIDIA GTC 21, April 12–16
Starting Monday, April 12, 2021, the NVIDIA GPU Technology Conference (GTC) is offering online sessions for you to learn AWS best practices to accomplish your machine learning (ML), virtual workstations, high performance computing (HPC), and Internet of Things (IoT) goals faster and more easily. Amazon Elastic Compute Cloud (Amazon EC2) instances powered by NVIDIA GPUs […]