AWS Machine Learning Blog

Category: Amazon Bedrock

Architecture diagram of solution

How Druva used Amazon Bedrock to address foundation model complexity when building Dru, Druva’s backup AI copilot

Druva enables cyber, data, and operational resilience for thousands of enterprises, and is trusted by 60 of the Fortune 500. In this post, we show how Druva approached natural language querying (NLQ)—asking questions in English and getting tabular data as answers—using Amazon Bedrock, the challenges they faced, sample prompts, and key learnings.

High-level design of the solution

Create a generative AI–powered custom Google Chat application using Amazon Bedrock

AWS offers powerful generative AI services, including Amazon Bedrock, which allows organizations to create tailored use cases such as AI chat-based assistants that give answers based on knowledge contained in the customers’ documents, and much more. Many businesses want to integrate these cutting-edge AI capabilities with their existing collaboration tools, such as Google Chat, to […]

Unlock organizational wisdom using voice-driven knowledge capture with Amazon Transcribe and Amazon Bedrock

This post introduces an innovative voice-based application workflow that harnesses the power of Amazon Bedrock, Amazon Transcribe, and React to systematically capture and document institutional knowledge through voice recordings from experienced staff members. Our solution uses Amazon Transcribe for real-time speech-to-text conversion, enabling accurate and immediate documentation of spoken knowledge. We then use generative AI, powered by Amazon Bedrock, to analyze and summarize the transcribed content, extracting key insights and generating comprehensive documentation.

Empower your generative AI application with a comprehensive custom observability solution

In this post, we set up the custom solution for observability and evaluation of Amazon Bedrock applications. Through code examples and step-by-step guidance, we demonstrate how you can seamlessly integrate this solution into your Amazon Bedrock application, unlocking a new level of visibility, control, and continual improvement for your generative AI applications.

Automate Amazon Bedrock batch inference: Building a scalable and efficient pipeline

Although batch inference offers numerous benefits, it’s limited to 10 batch inference jobs submitted per model per Region. To address this consideration and enhance your use of batch inference, we’ve developed a scalable solution using AWS Lambda and Amazon DynamoDB. This post guides you through implementing a queue management system that automatically monitors available job slots and submits new jobs as slots become available.

Build a video insights and summarization engine using generative AI with Amazon Bedrock

This post presents a solution where you can upload a recording of your meeting (a feature available in most modern digital communication services such as Amazon Chime) to a centralized video insights and summarization engine. This engine uses artificial intelligence (AI) and machine learning (ML) services and generative AI on AWS to extract transcripts, produce a summary, and provide a sentiment for the call. The solution notes the logged actions per individual and provides suggested actions for the uploader. All of this data is centralized and can be used to improve metrics in scenarios such as sales or call centers.

Classify Flow

Automate document processing with Amazon Bedrock Prompt Flows (preview)

This post demonstrates how to build an IDP pipeline for automatically extracting and processing data from documents using Amazon Bedrock Prompt Flows, a fully managed service that enables you to build generative AI workflow using Amazon Bedrock and other services in an intuitive visual builder. Amazon Bedrock Prompt Flows allows you to quickly update your pipelines as your business changes, scaling your document processing workflows to help meet evolving demands.

From RAG to fabric: Lessons learned from building real-world RAGs at GenAIIC – Part 1

In this post, we cover the core concepts behind RAG architectures and discuss strategies for evaluating RAG performance, both quantitatively through metrics and qualitatively by analyzing individual outputs. We outline several practical tips for improving text retrieval, including using hybrid search techniques, enhancing context through data preprocessing, and rewriting queries for better relevance.

Create a generative AI-based application builder assistant using Amazon Bedrock Agents

Create a generative AI-based application builder assistant using Amazon Bedrock Agents

Agentic workflows are a fresh new perspective in building dynamic and complex business use- case based workflows with the help of large language models (LLM) as their reasoning engine or brain. In this post, we set up an agent using Amazon Bedrock Agents to act as a software application builder assistant.