AWS Machine Learning Blog

Category: Amazon Bedrock

Amazon Bedrock Guardrails announces IAM Policy-based enforcement to deliver safe AI interactions

Today, we’re announcing a significant enhancement to Amazon Bedrock Guardrails: AWS Identity and Access Management (IAM) policy-based enforcement. This powerful capability enables security and compliance teams to establish mandatory guardrails for every model inference call, making sure organizational safety policies are consistently enforced across AI interactions. This feature enhances AI governance by enabling centralized control over guardrail implementation.

vector embeddings

Build your gen AI–based text-to-SQL application using RAG, powered by Amazon Bedrock (Claude 3 Sonnet and Amazon Titan for embedding)

In this post, we explore using Amazon Bedrock to create a text-to-SQL application using RAG. We use Anthropic’s Claude 3.5 Sonnet model to generate SQL queries, Amazon Titan in Amazon Bedrock for text embedding and Amazon Bedrock to access these models.

Revolutionizing clinical trials with the power of voice and AI

As the healthcare industry continues to embrace digital transformation, solutions that combine advanced technologies like audio-to-text translation and LLMs will become increasingly valuable in addressing key challenges, such as patient education, engagement, and empowerment. In this post, we discuss possible use cases for combining speech recognition technology with LLMs, and how the solution can revolutionize clinical trials.

Intelligent healthcare assistants: Empowering stakeholders with personalized support and data-driven insights

Healthcare decisions often require integrating information from multiple sources, such as medical literature, clinical databases, and patient records. LLMs lack the ability to seamlessly access and synthesize data from these diverse and distributed sources. This limits their potential to provide comprehensive and well-informed insights for healthcare applications. In this blog post, we will explore how Mistral LLM on Amazon Bedrock can address these challenges and enable the development of intelligent healthcare agents with LLM function calling capabilities, while maintaining robust data security and privacy through Amazon Bedrock Guardrails.

Getting started with computer use in Amazon Bedrock Agents

Today, we’re announcing computer use support within Amazon Bedrock Agents using Anthropic’s Claude 3.5 Sonnet V2 and Anthropic’s Claude Sonnet 3.7 models on Amazon Bedrock. This integration brings Anthropic’s visual perception capabilities as a managed tool within Amazon Bedrock Agents, providing you with a secure, traceable, and managed way to implement computer use automation in your workflows.

Evaluating RAG applications with Amazon Bedrock knowledge base evaluation

This post focuses on RAG evaluation with Amazon Bedrock Knowledge Bases, provides a guide to set up the feature, discusses nuances to consider as you evaluate your prompts and responses, and finally discusses best practices. By the end of this post, you will understand how the latest Amazon Bedrock evaluation features can streamline your approach to AI quality assurance, enabling more efficient and confident development of RAG applications.

How GoDaddy built a category generation system at scale with batch inference for Amazon Bedrock

This post provides an overview of a custom solution developed for GoDaddy, a domain registrar, registry, web hosting, and ecommerce company that seeks to make entrepreneurship more accessible by using generative AI to provide personalized business insights to over 21 million customers. In this collaboration, the Generative AI Innovation Center team created an accurate and cost-efficient generative AI–based solution using batch inference in Amazon Bedrock, helping GoDaddy improve their existing product categorization system.

Benchmarking customized models on Amazon Bedrock using LLMPerf and LiteLLM

This post begins a blog series exploring DeepSeek and open FMs on Amazon Bedrock Custom Model Import. It covers the process of performance benchmarking of custom models in Amazon Bedrock using popular open source tools: LLMPerf and LiteLLM. It includes a notebook that includes step-by-step instructions to deploy a DeepSeek-R1-Distill-Llama-8B model, but the same steps apply for any other model supported by Amazon Bedrock Custom Model Import.

Create asynchronous agentic AI agents with Amazon Bedrock

Creating asynchronous AI agents with Amazon Bedrock

The integration of generative AI agents into business processes is poised to accelerate as organizations recognize the untapped potential of these technologies. Advancements in multimodal artificial intelligence (AI), where agents can understand and generate not just text but also images, audio, and video, will further broaden their applications. This post will discuss agentic AI driven architecture and ways of implementing.

Revolutionizing customer service: MaestroQA’s integration with Amazon Bedrock for actionable insight

In this post, we dive deeper into one of MaestroQA’s key features—conversation analytics, which helps support teams uncover customer concerns, address points of friction, adapt support workflows, and identify areas for coaching through the use of Amazon Bedrock. We discuss the unique challenges MaestroQA overcame and how they use AWS to build new features, drive customer insights, and improve operational inefficiencies.