AWS Big Data Blog

Category: Amazon EMR

bdb4538_solution-overview

Expand data access through Apache Iceberg using Delta Lake UniForm on AWS

Delta Lake UniForm is an open table format extension designed to provide a universal data representation that can be efficiently read by different processing engines. It aims to bridge the gap between various data formats and processing systems, offering a standardized approach to data storage and retrieval. With UniForm, you can read Delta Lake tables as Apache Iceberg tables. This post explores how to start using Delta Lake UniForm on Amazon Web Services (AWS).

Fine-grained access control in Amazon EMR Serverless with AWS Lake Formation

In this post, we discuss how to implement fine-grained access control in EMR Serverless using Lake Formation. With this integration, organizations can achieve better scalability, flexibility, and cost-efficiency in their data operations, ultimately driving more value from their data assets.

Analyze Amazon EMR on Amazon EC2 cluster usage with Amazon Athena and Amazon QuickSight

In this post, we guide you through deploying a comprehensive solution in your Amazon Web Services (AWS) environment to analyze Amazon EMR on EC2 cluster usage. By using this solution, you will gain a deep understanding of resource consumption and associated costs of individual applications running on your EMR cluster.

Apache HBase online migration to Amazon EMR

Apache HBase is an open source, non-relational distributed database developed as part of the Apache Software Foundation’s Hadoop project. HBase can run on Hadoop Distributed File System (HDFS) or Amazon Simple Storage Service (Amazon S3), and can host very large tables with billions of rows and millions of columns. The followings are some typical use […]

Enhance Amazon EMR scaling capabilities with Application Master Placement

Starting with the Amazon EMR 7.2 release, Amazon EMR on EC2 introduced a new feature called Application Master (AM) label awareness, which allows users to enable YARN node labels to allocate the AM containers within On-Demand nodes only. In this post, we explore the key features and use cases where this new functionality can provide significant benefits, enabling cluster administrators to achieve optimal resource utilization, improved application reliability, and cost-efficiency in your EMR on EC2 clusters.

Amazon EMR on EC2 cost optimization: How a global financial services provider reduced costs by 30%

In this post, we highlight key lessons learned while helping a global financial services provider migrate their Apache Hadoop clusters to AWS and best practices that helped reduce their Amazon EMR, Amazon Elastic Compute Cloud (Amazon EC2), and Amazon Simple Storage Service (Amazon S3) costs by over 30% per month.

Amazon EMR Serverless observability, Part 1: Monitor Amazon EMR Serverless workers in near real time using Amazon CloudWatch

We have launched job worker metrics in Amazon CloudWatch for EMR Serverless. This feature allows you to monitor vCPUs, memory, ephemeral storage, and disk I/O allocation and usage metrics at an aggregate worker level for your Spark and Hive jobs. This post is part of a series about EMR Serverless observability. In this post, we discuss how to use these CloudWatch metrics to monitor EMR Serverless workers in near real time.

Use Batch Processing Gateway to automate job management in multi-cluster Amazon EMR on EKS environments

AWS customers often process petabytes of data using Amazon EMR on EKS. In enterprise environments with diverse workloads or varying operational requirements, customers frequently choose a multi-cluster setup due to the following advantages: Better resiliency and no single point of failure – If one cluster fails, other clusters can continue processing critical workloads, maintaining business […]

How CFM built a well-governed and scalable data-engineering platform using Amazon EMR for financial features generation

Capital Fund Management (CFM) is an alternative investment management company based in Paris with staff in New York City and London. CFM takes a scientific approach to finance, using quantitative and systematic techniques to develop the best investment strategies. In this post, we share how we built a well-governed and scalable data engineering platform using Amazon EMR for financial features generation.

Attribute Amazon EMR on EC2 costs to your end-users

In this post, we share a chargeback model that you can use to track and allocate the costs of Spark workloads running on Amazon EMR on EC2 clusters. We describe an approach that assigns Amazon EMR costs to different jobs, teams, or lines of business. You can use this feature to distribute costs across various business units. This can assist you in monitoring the return on investment for your Spark-based workloads.